Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo.

نویسندگان

  • Anne A Ollis
  • Kathleen Postle
چکیده

In gram-negative bacteria, the cytoplasmic membrane proton-motive force energizes the active transport of TonB-dependent ligands through outer membrane TonB-gated transporters. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD couple the proton-motive force to conformational changes in TonB, which are hypothesized to form the basis of energy transduction through direct contact with the transporters. While the role of ExbB is not well understood, contact between periplasmic domains of TonB and ExbD is required, with the conformational response of TonB to presence or absence of proton motive force being modulated through ExbD. A region (residues 92 to 121) within the ExbD periplasmic domain was previously identified as being important for TonB interaction. Here, the specific sites of periplasmic domain interactions between that region and the TonB carboxy terminus were identified by examining 270 combinations of 45 TonB and 6 ExbD individual cysteine substitutions for disulfide-linked heterodimer formation. ExbD residues A92C, K97C, and T109C interacted with multiple TonB substitutions in four regions of the TonB carboxy terminus. Two regions were on each side of the TonB residues known to interact with the TonB box of TonB-gated transporters, suggesting that ExbD positions TonB for correct interaction at that site. A third region contained a functionally important glycine residue, and the fourth region involved a highly conserved predicted amphipathic helix. Three ExbD substitutions, F103C, L115C, and T121C, were nonreactive with any TonB cysteine substitutions. ExbD D25, a candidate to be on a proton translocation pathway, was important to support efficient TonB-ExbD heterodimerization at these specific regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The same periplasmic ExbD residues mediate in vivo interactions between ExbD homodimers and ExbD-TonB heterodimers.

The TonB system couples cytoplasmic membrane proton motive force to TonB-gated outer membrane transporters for active transport of nutrients into the periplasm. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD promote conformational changes in TonB, which transmits this energy to the transporters. The only known energy-dependent interaction occurs between the periplasmic domains...

متن کامل

The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization.

The TonB system of gram-negative bacteria energizes the active transport of diverse nutrients through high-affinity TonB-gated outer membrane transporters using energy derived from the cytoplasmic membrane proton motive force. Cytoplasmic membrane proteins ExbB and ExbD harness the proton gradient to energize TonB, which directly contacts and transmits this energy to ligand-loaded transporters....

متن کامل

The TonB Dimeric Crystal Structures Do Not Exist In Vivo

The TonB system energizes transport of nutrients across the outer membrane of Escherichia coli using cytoplasmic membrane proton motive force (PMF) for energy. Integral cytoplasmic membrane proteins ExbB and ExbD appear to harvest PMF and transduce it to TonB. The carboxy terminus of TonB then physically interacts with outer membrane transporters to allow translocation of ligands into the perip...

متن کامل

In vivo evidence for TonB dimerization.

TonB, in complex with ExbB and ExbD, is required for the energy-dependent transport of ferric siderophores across the outer membrane of Escherichia coli, the killing of cells by group B colicins, and infection by phages T1 and phi80. To gain insights into the protein complex, TonB dimerization was studied by constructing hybrid proteins from complete TonB (containing amino acids 1 to 239) [TonB...

متن کامل

In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli.

The siderophore transport activities of the two outer membrane proteins FhuA and FecA of Escherichia coli require the proton motive force of the cytoplasmic membrane. The energy of the proton motive force is postulated to be transduced to the transport proteins by a protein complex that consists of the TonB, ExbB, and ExbD proteins. In the present study, TonB fragments lacking the cytoplasmic m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 194 12  شماره 

صفحات  -

تاریخ انتشار 2012